#### Answer

$s' = \frac{-5t+2}{t^{3}}$
$s'' = \frac{2(5t-3)}{t^{4}}$

#### Work Step by Step

$s = \frac{t^{2}+5t-1}{t^{2}}$
$s' = \frac{t^{2}(2t+5) - 2t(t^{2}+5t-1)}{t^{4}}$
$s' = \frac{-5t^{2}+2t}{t^{4}}$
$s' = \frac{-5t+2}{t^{3}}$
$s'' = \frac{t^{3}(-5)-3t^{2}(-5t+2)}{t^{6}}$
$s'' = \frac{10t^{3}-6t^{2}}{t^{6}}$
$s'' = \frac{10t-6}{t^{4}}$
$s'' = \frac{2(5t-3)}{t^{4}}$