University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.3 - Path Independence, Conservative Fields, and Potential Functions - Exercises - Page 850: 21

Answer

$$0$$

Work Step by Step

Since, $\nabla f =\dfrac{\partial f}{ \partial x} i+\dfrac{\partial f}{ \partial y}j +\dfrac{\partial f}{ \partial z} k$ $ \dfrac{\partial f}{ \partial x}= \dfrac{1}{y} ; \dfrac{\partial f}{ \partial y}=\dfrac{-x}{y^2} +\dfrac{1}{z} \\ \dfrac{\partial f}{ \partial z}=\dfrac{-y}{z^2}$ Now, $f=\dfrac{x}{y}+g(y,z)$ or, $\dfrac{\partial g(y,z)}{ \partial x}=0 $ $f=\dfrac{x}{y}+\dfrac{y}{z}+h(z) $ or,$h(z)=C=0$ Now, we will substitute all the above values in the given integral. $ \int_{1,1,1}^{2,2,2} \dfrac{1}{y} dx +(\dfrac{1}{z} -\dfrac{x}{y^2}) dy -\dfrac{y}{z^2} dz$ or, $=f(2,1,1)-f(1,2,1)=(\dfrac{2}{2}+\dfrac{2}{2}+C)-(\dfrac{1}{1}+\dfrac{1}{1}+C)$ or, $=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.