University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.3 - Path Independence, Conservative Fields, and Potential Functions - Exercises - Page 850: 18

Answer

$\ln (\dfrac{\pi}{2})$

Work Step by Step

$\nabla f =\dfrac{\partial f}{ \partial x} i+\dfrac{\partial f}{ \partial y}j +\dfrac{\partial f}{ \partial z} k $ $ \dfrac{\partial f}{ \partial x}= 2 \cos y$ and $\dfrac{\partial f}{ \partial y}=\dfrac{1}{y}-2 x \sin y $ and $ \dfrac{\partial f}{ \partial z}=\dfrac{1}{z}$ Now, $f=2x \cos y +g(y,z) $ and $\dfrac{\partial g(y,z)}{ \partial x}=\dfrac{1}{y}$ and $g(y,z)=\ln y + h(z)$ Now, $f=2x \cos y +\ln y+h(z) $ and $h(z)=\ln z+C$ We will substitute all the above values in the given integral. $ \int_{0,2,1}^{1,0.5 \pi,2} 2 \cos y dx+(\dfrac{1}{y}-2 x \sin t ) dy +\dfrac{dz}{z}=\ln (\pi/2)+\ln 2 -\ln 2 $ or, $=\ln (\dfrac{\pi}{2})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.