Answer
$-\pi$
Work Step by Step
We know that the line equation is defined as: $r(t)=r_0+kt$
Thus, $r_0+kt=(0,0,0)+t \lt 3,3,1 \gt=\lt 3t, 3t, t \gt$
So, $x=3t \implies dx= 3 dt$; $y=3 t \implies dy=3 dt$ and $z=2t \implies dz=2dt$
We need to substitute all the values in the given integral.
$\int_{0,0,0}^{3,3,1}18tdt-27t^2dt+\dfrac{-4}{1+t^2} dt=-\pi$