University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.3 - Path Independence, Conservative Fields, and Potential Functions - Exercises - Page 850: 20

Answer

$$-\ln 2$$

Work Step by Step

Since, $\nabla f =\dfrac{\partial f}{ \partial x} i+\dfrac{\partial f}{ \partial y}j +\dfrac{\partial f}{ \partial z} k$ $ \dfrac{\partial f}{ \partial x}= 2x \ln y -yz$ and $\dfrac{\partial f}{ \partial y}=\dfrac{x^2}{y} -xz$ and $\dfrac{\partial f}{ \partial z}=-xy$ Now, $f(x,y,z)=x^2\ln y -xyz +g(y,z))$ or, $\dfrac{\partial g(y,z)}{ \partial x}=0 $ Now, $f(x,y,z) =x^2\ln y -xyz+h(z)$ and $h(z)=C=0$ Now, we will substitute all the above values in the given integral. $ \int_{1,2,1}^{2,1,1 } (2 x \ln y ) dx +(\dfrac{x^2}{y} -xz) dy -xy dz$ or, $=f(2,1,1)-f(1,2,1) $ or, $=-\ln 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.