University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Practice Exercises - Page 818: 50

Answer

$\overline{x}=\dfrac{13}{3\pi} $ and $\overline{y}=\dfrac{13}{3\pi}$

Work Step by Step

$M=\int_{0}^{\pi/2} \int_{1}^3 r \ dr \ d \theta=4 \int_{0}^{\pi/2} d \theta = 2 \pi$ Now, $M_y=\int_{0}^{\pi/2} \int_{1}^3 r^2 \cos \theta \ dr \ d \theta=(26/3) \int_{0}^{\pi/2} \cos \theta d \theta = \dfrac{26}{3}$ and $M_x=\int_{0}^{\pi/2} \int_{1}^3 r^2 \cos \theta \ dr \ d \theta=(26/3) \int_{0}^{\pi/2} \cos \theta d \theta = \dfrac{26}{3}$ So, by symmetry $\overline{x}=\dfrac{13}{3\pi} $ and $\overline{y}=\dfrac{13}{3\pi}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.