University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Practice Exercises - Page 818: 45

Answer

$M= 3 \delta$ $I_x=2 \delta$ $\sqrt {\dfrac{2}{3}}$

Work Step by Step

Consider $M= \delta \int_{0}^{3} \int_{0}^{2x/3} \ dy \ dx= \delta \int_{0}^{3} \dfrac{2x}{3} \ dy \ dx = 3 \delta$ or, $= \delta \int_{0}^{3} \int_{0}^{2x/3} y^2 \ dy \ dx$ or, $= \dfrac{8 \delta}{81} \int_{0}^{3} x^3 \ dx$ or, $=(\dfrac{8 \delta}{81}) (\dfrac{3^4}{4})$ and $I_x=2 \delta$ Thus, $R_x=\sqrt {\dfrac{I_x}{M}}=\sqrt {\dfrac{2}{3}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.