University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Practice Exercises - Page 818: 43

Answer

$104$

Work Step by Step

Consider $I_0= \int_0^{2\pi} \int_{2x}^{4} (x^2+y^2) (3) \ dy \ dx$ or, $= 3 \int_0^{2} (4x^2 +\dfrac{64}{3}-\dfrac{14x^3}{3}) \ dx$ or, $=3 [\dfrac{4x^3}{3}+\dfrac{64x}{3}-\dfrac{14x^4}{12}] _0^2 $ or, $=3 [\dfrac{4(2^3-0)}{3}+\dfrac{64(2-0)}{3}-\dfrac{14(2^4-0)}{12}]$ or, $=104$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.