University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Practice Exercises - Page 818: 47

Answer

$M_x=M_y=0$

Work Step by Step

$M=\int_{-1}^1 \int_{-1} (x^2+y^2+\dfrac{1}{3}) \ dy \ dx=\int_{-1}^1 (2x^2 +\dfrac{4}{3}) \ dx=4$ Now, $M_x=\int_{-1}^1 \int_{-1} y(x^2+y^2+\dfrac{1}{3}) \ dy \ dx=0$ and $M_y=\int_{-1}^1 \int_{-1} x(x^2+y^2+\dfrac{1}{3}) \ dy \ dx=\int_{-1}^1 (2x^3+\dfrac{4}{3} x ) \ dx =0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.