University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 12 - Practice Exercises - Page 673: 8

Answer

$v \cdot j =12; a \cdot j =26$

Work Step by Step

Since, $v=\dfrac{dx}{dt}i+\dfrac{dy}{dt}j$ $ v \cdot j=\dfrac{dy}{dt}=\dfrac{1}{3}x^2 \dfrac{dx}{dt}; (\dfrac{dx}{dt}=4)$ and $v \cdot j (3,3)=\dfrac{4}{3}x^2 \\ =\dfrac{(4)(9)}{3} \\=12$ $a(t)=\dfrac{2}{3}x(\dfrac{dx}{dt})^2+\dfrac{1}{3} x^2 \dfrac{d^2 x}{dt^2} $ $\implies a \cdot j=\dfrac{2}{3}x\times (\dfrac{dx}{dt})^2+\dfrac{1}{3} \times x^2 \dfrac{d^2 x}{dt^2} \\ =\dfrac{2}{3}x(4)^2+\dfrac{1}{3} (3)^2 (-2) \\ =26$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.