University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 12 - Practice Exercises - Page 673: 4

Answer

$$\dfrac{\pi}{2}$$

Work Step by Step

Let $\theta$ be the angle between $r$ and $a$ So, $\theta =\cos^{-1} [\dfrac{r \cdot a}{|r| |a|}]$ Now, $v(t)=\dfrac{dr}{dt}=i[e^t(\cos t -\sin t) ]+j [e^t(\sin t +\cos t) ]$ $\implies a(t)=\dfrac{dv(t)}{dt}=-2 e^t ( \sin t i- \cos t j)$ Next, $\theta =\cos^{-1} [\dfrac{ e^t \cos t \times (-2 e^t \sin t) +(e^t \sin t) (2e^t \cos t)}{\sqrt {(e^t \cos t )^2+(e^t \cos t )^2 \cdot \sqrt {(-2 e^t \sin t)^2 +( e^t \cos t)^2}}}]$ $\implies \theta=\cos^{-1} (0)=\dfrac{\pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.