Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 9: First-Order Differential Equations - Section 9.2 - First-Order Linear Equations - Exercises 9.2 - Page 537: 28

Answer

(a) $i=(\dfrac{V}{R})+ce^{-Rt/L}$; (b) $i=(\dfrac{V}{R})-(\dfrac{V}{R})e^{-Rt/L}$; (c) $i=\dfrac{V}{R}$ is a solution of the differential equation $\dfrac{di}{dt}+\dfrac{R}{L}i=\dfrac{V}{L}$ $i=ce^{-Rt/L}$ is a solution equation $\dfrac{di}{dt}+\dfrac{R}{L}i=0$

Work Step by Step

(a) $\dfrac{di}{dt}+\dfrac{R}{L}i=\dfrac{V}{L}$ The integrating factor is: $I=e^{\int (R/L) dt}=e^{Rt/L}$ Now, $e^{Rt/L}[\dfrac{di}{dt}+\dfrac{R}{L}i]=e^{Rt/L}(\dfrac{V}{L})$ This gives: $\int [e^{Rt/L}i]'=\int (\dfrac{V}{R}) e^{Rt/L} dt $ $\implies i=(\dfrac{V}{R})+ce^{-Rt/L}$ (b) Apply the initial conditions. $ i=(\dfrac{V}{R})+ce^{-(Rt/L)} \implies c=-\dfrac{V}{R}$ or, $i=(\dfrac{V}{R})+ce^{-Rt/L} \implies i=(\dfrac{V}{R})-(\dfrac{V}{R})e^{-Rt/L}$ (c) consider $\dfrac{di}{dt}+\dfrac{R}{L}i=\dfrac{V}{L}$ or, $\dfrac{di}{dt}+\dfrac{R}{L}(\dfrac{V}{R})=\dfrac{V}{L}$ or, $\dfrac{di}{dt}=0$ we need to prove that $i=ce^{-Rt/L}$ is a solution equation $\dfrac{di}{dt}+\dfrac{R}{L}i=0$ or, $\dfrac{di}{dt}=c(-\dfrac{R}{L}) e^{-(Rt/L)}$ Thus, we have $\dfrac{di}{dt}+(\dfrac{R}{L})i=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.