Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.5 - Integration of Rational Functions by Partial Fractions - Exercises 8.5 - Page 475: 21

Answer

$$\frac{1}{4}\ln 2 + \frac{1}{8}\pi $$

Work Step by Step

$$\eqalign{ & \int_0^1 {\frac{{dx}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}} \cr & {\text{Decompose the integrand }}\frac{1}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}{\text{ into partial fractions}} \cr & \frac{1}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} = \frac{A}{{x + 1}} + \frac{{Bx + C}}{{{x^2} + 1}} \cr & {\text{Multiply by }}\left( {x + 1} \right)\left( {{x^2} + 1} \right){\text{ and simplify}} \cr & 1 = A\left( {{x^2} + 1} \right) + \left( {Bx + C} \right)\left( {x + 1} \right)\,\,\,\,\left( {\bf{1}} \right) \cr & {\text{Substitute }}x = - 1{\text{ into the equation }}\left( {\bf{1}} \right) \cr & 1 = A\left( {{{\left( { - 1} \right)}^2} + 1} \right) + \left( {Bx + C} \right)\left( 0 \right) \cr & A = \frac{1}{2} \cr & {\text{Expand the equation }}\left( {\bf{1}} \right) \cr & 1 = A{x^2} + A + B{x^2} + Bx + Cx + C \cr & {\text{Group terms}} \cr & 1 = \left( {A{x^2} + B{x^2}} \right) + \left( {Bx + Cx} \right) + A + C \cr & {\text{Equating coefficients, we get}} \cr & A + B = 0\,\,\,\, \to \,\,\,\,B = - \frac{1}{2},\,\,\,\,\,\,\,\,B + C = 0,\,\,\,C = \frac{1}{2} \cr & \cr & {\text{Therefore}}{\text{,}} \cr & \frac{1}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} = \frac{{1/2}}{{x + 1}} + \frac{{\left( { - 1/2} \right)x + 1/2}}{{{x^2} + 1}} \cr & \frac{1}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} = \frac{{1/2}}{{x + 1}} - \frac{x}{{2\left( {{x^2} + 1} \right)}} + \frac{1}{{2\left( {{x^2} + 1} \right)}} \cr & \int_0^1 {\frac{{dx}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}} = \int {\left( {\frac{{1/2}}{{x + 1}} - \frac{x}{{2\left( {{x^2} + 1} \right)}} + \frac{1}{{2\left( {{x^2} + 1} \right)}}} \right)} dx \cr & {\text{Integrating, we get}} \cr & = \left( {\frac{1}{2}\ln \left| {x + 1} \right| - \frac{1}{4}\ln \left( {{x^2} + 1} \right) + \frac{1}{2}\arctan x} \right)_0^1 \cr & = \left( {\frac{1}{2}\ln \left| {1 + 1} \right| - \frac{1}{4}\ln \left( {{1^2} + 1} \right) + \frac{1}{2}\arctan 1} \right) - \left( {\frac{1}{2}\ln \left| {0 + 1} \right| - \frac{1}{4}\ln \left( {{0^2} + 1} \right) + \frac{1}{2}\arctan 0} \right) \cr & = \frac{1}{2}\ln 2 - \frac{1}{4}\ln 2 + \frac{1}{2}\left( {\frac{\pi }{4}} \right) \cr & = \frac{1}{4}\ln 2 + \frac{1}{8}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.