Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 18


$$4x{\left( {{x^2}\ln x} \right)^3}\left( {1 + 2\ln x} \right)$$

Work Step by Step

$$\eqalign{ & y = {\left( {{x^2}\ln x} \right)^4} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{{\left( {{x^2}\ln x} \right)}^4}} \right] \cr & {\text{use the chain rule}} \cr & \frac{{dy}}{{dx}} = 4{\left( {{x^2}\ln x} \right)^{4 - 1}}\frac{d}{{dx}}\left[ {{x^2}\ln x} \right] \cr & \frac{{dy}}{{dx}} = 4{\left( {{x^2}\ln x} \right)^3}\frac{d}{{dx}}\left[ {{x^2}\ln x} \right] \cr & {\text{use the product rule}} \cr & \frac{{dy}}{{dx}} = 4{\left( {{x^2}\ln x} \right)^3}\left( {{x^2}\frac{d}{{dx}}\left[ {\ln x} \right] + \ln x\frac{d}{{dx}}\left[ {{x^2}} \right]} \right) \cr & {\text{solve the derivatives }} \cr & \frac{{dy}}{{dx}} = 4{\left( {{x^2}\ln x} \right)^3}\left( {{x^2}\left( {\frac{1}{x}} \right) + \ln x\left( {2x} \right)} \right) \cr & {\text{simplifying, we get:}} \cr & \frac{{dy}}{{dx}} = 4{\left( {{x^2}\ln x} \right)^3}\left( {x + 2x\ln x} \right) \cr & \frac{{dy}}{{dx}} = 4x{\left( {{x^2}\ln x} \right)^3}\left( {1 + 2\ln x} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.