Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 39

Answer

$q'=\frac{t+2}{2(t+1)\sqrt{t+1}}\cos\left(\frac{t}{\sqrt{t+1}}\right)$

Work Step by Step

To find the derivative of the function $q=\sin\left(\frac{t}{\sqrt{t+1}}\right)$, we can use the chain rule: $$\begin{aligned} q'& = \frac{d}{dt} \left(\frac{t}{\sqrt{t+1}}\right)\cos\left(\frac{t}{\sqrt{t+1}}\right)\\ &=\frac{\sqrt{t+1}-\frac{t}{2\sqrt{t+1}}}{t+1}\cos\left(\frac{t}{\sqrt{t+1}}\right)\\ &=\frac{2(t+1)-t}{2(t+1)\sqrt{t+1}}\cos\left(\frac{t}{\sqrt{t+1}}\right)\\ &=\frac{t+2}{2(t+1)\sqrt{t+1}}\cos\left(\frac{t}{\sqrt{t+1}}\right). \end{aligned}$$ Therefore, the derivative of $q$ is $$q' =\frac{t+2}{2(t+1)\sqrt{t+1}}\cos\left(\frac{t}{\sqrt{t+1}}\right).$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.