Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 14: Partial Derivatives - Section 14.4 - The Chain Rule - Exercises 14.4 - Page 817: 8

Answer

x = u cos y = 1.3 * cos (p>6) y = u sin y = 1.3 * sin (p>6) z = tan-1 (x/y) = tan-1 (cos y / sin y)

Work Step by Step

a) Using the Chain Rule: Let's first express x and y as functions of u and y: x = u cos y y = u sin y Now, z = tan-1 (x>y), so dz/du = (1 / (1 + (x/y)^2)) * (cos y * dx/du + sin y * dy/du) = (1 / (1 + (x/y)^2)) * (cos y * cos y + sin y * sin y) = (1 / (1 + (x/y)^2)) * (cos^2 y + sin^2 y) = (1 / (1 + (x/y)^2)) 0z>0u = dz/du * du/dt = (1 / (1 + (x/y)^2)) * du/dt Similarly, 0z>0y = dz/du * dy/dt = (1 / (1 + (x/y)^2)) * dy/dt By expressing z directly in terms of u and y before differentiating: z = tan-1 (x/y) = tan-1 (cos y / sin y) 0z>0u = (cos y / sin y) * (1 / (1 + (cos y / sin y)^2)) * cos y = cos y / (sin y * (1 + (cos y / sin y)^2)) 0z>0y = (cos y / sin y) * (1 / (1 + (cos y / sin y)^2)) * -sin y = -cos y / (sin y * (1 + (cos y / sin y)^2)) b) Evaluating 0z>0u and 0z>0y at (u, y) = (1.3, p>6): u = 1.3 y = p>6 x = u cos y = 1.3 * cos (p>6) y = u sin y = 1.3 * sin (p>6) z = tan-1 (x/y) = tan-1 (cos y / sin y) 0z>0u = cos y / (sin y * (1 + (cos y / sin y)^2)) = cos (p>6) / (sin (p>6) * (1 + (cos (p>6) / sin (p>6))^2)) 0z>0y = -cos y / (sin y * (1 + (cos y / sin y)^2)) = -cos (p>6) / (sin (p>6) * (1 + (cos (p>6) / sin (p>6))^2)) Note: The values of 0z>0u and 0z>0y will depend on the exact value of p>6, but without a specific value, it is not possible to calculate the exact result.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.