Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 12: Vectors and the Geometry of Space - Section 12.3 - The Dot Product - Exercises 12.3 - Page 713: 27



Work Step by Step

$(*)\quad {\bf u_{1}}$and ${\bf u_{2}}$ are orthogonal $\Rightarrow{\bf u_{1}}\cdot{\bf u_{2}}=0$ $(**) \quad {\bf u_{1}}$and ${\bf u_{2}}$ are unit vectors $\Rightarrow|{\bf u_{1}}|=|{\bf u_{2}}|=1$ Using Properties of the Dot Product (boxed on p. 709): ${\bf v}\cdot{\bf u_{1}}=(a{\bf u_{1}}+b{\bf u_{2}})\cdot{\bf u_{1}}$ $=a{\bf u_{1}} \cdot{\bf u_{1}}+b{\bf u_{2}}\cdot{\bf u_{1}} \qquad$... property 3 $=a({\bf u_{1}} \cdot{\bf u_{1}})+b({\bf u_{2}}\cdot{\bf u_{1}}) \qquad$... property 2 $=a({\bf u_{1}} \cdot{\bf u_{1}})+b(0) \qquad$... $(*)$ from above $=a\cdot|{\bf u_{1}}|^{2} \qquad$... property $4$ $=a(1) \qquad$... $(**)$ from above $=a$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.