Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 11: Parametric Equations and Polar Coordinates - Section 11.7 - Conics in Polar Coordinates - Exercises 11.7 - Page 686: 51

Answer

$r\displaystyle \cos(\theta-\frac{\pi}{2})=-5$ or $r\displaystyle \cos(\theta+\frac{\pi}{2})=5$

Work Step by Step

Conversion formulas $\left\{\begin{array}{ll} (x,y)=(r\cos\theta,r\sin\theta) & \\ r^{2}=x^{2}+y^{2}, & \tan\theta=\frac{y}{x} \end{array}\right.$ Using the conversion formula, $ y=r\sin\theta$, we get: $r\sin\theta=-5$ But we want one of the form with cosine. Apply the symmetry identity about $\displaystyle \frac{\pi}{2},\ \displaystyle \quad \cos(\frac{\pi}{2}-\theta)=\sin\theta$ and the fact that cosine is an even function $\displaystyle \cos[-(\frac{\pi}{2}-\theta)]=\cos(\theta-\frac{\pi}{2})$ So, a parametric equation for the line can be $r\displaystyle \cos(\theta-\frac{\pi}{2})=-5$ Note: $\displaystyle \cos(\alpha+\frac{\pi}{2})=-\sin\alpha$ so a paramateric equation could also be $r\displaystyle \cos(\theta+\frac{\pi}{2})=5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.