Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 11: Parametric Equations and Polar Coordinates - Section 11.7 - Conics in Polar Coordinates - Exercises 11.7 - Page 686: 38

Answer

Graph: .

Work Step by Step

The polar equation for a conic with eccentricity $e$ is $\displaystyle \quad r=\frac{ke}{1+e\cos\theta},$ where $x=k \gt 0$ is the vertical directrix, and $\left\{\begin{array}{ll} e=1 & \Rightarrow\text{parabola}\\ e \lt 1 & \Rightarrow\text{ellipse}\\ e \gt 1 & \Rightarrow\text{hyperbola} \end{array}\right.$ $\displaystyle \frac{6\div 2}{(2+\cos\theta)\div 2}=\frac{3}{1+(\frac{1}{2})\cos\theta}=\frac{6(\frac{1}{2})}{1+(\frac{1}{2})\cos\theta}$ So, $e=\displaystyle \frac{1}{2},\qquad \Rightarrow\text{ellipse}$ and $\quad k=6 \Rightarrow x=6$ is the right directrix. $ r=\displaystyle \frac{a(1-e^{2})}{1+e\cos\theta}\quad$ is the polar equation of an ellipse, $a(1-e^{2})=3$ $a(1-\displaystyle \frac{1}{4})=3$ $a\displaystyle \cdot\frac{3}{4}=3$ $a=4$ $c=ea=2$ The center of the ellipse is (in polar coordinates) at $(2,\pi)$ (2 units left of the focus at the origin). The vertices are at $4$ units left/right of the center; in polar coordinates, $(6,\pi)$ and $(-2,\pi)$ or $(2,0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.