Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 11: Parametric Equations and Polar Coordinates - Section 11.5 - Areas and Lengths in Polar Coordinates - Exercises 11.5 - Page 670: 4

Answer

$\dfrac{3\pi a^2}{2}$

Work Step by Step

Consider $A=\dfrac{1}{2}\int_m^n (r^2) d \theta =\int_{0}^{2\pi} \dfrac{a(1+ \cos \theta)^2}{2} d \theta$ $\int_{0}^{2\pi} \dfrac{a(1+ \cos \theta)^2}{2} d \theta=\dfrac{a^2}{2}\int_{0}^{2\pi} 1+(\dfrac{1}{2})+\dfrac{\cos2 \theta}{2}+2\cos \theta d \theta$ or, $\dfrac{a^2}{2}\int_{0}^{2\pi} 1+(\dfrac{1}{2})+\dfrac{\cos2 \theta}{2}+2 (\cos \theta) d \theta=\dfrac{a^2}{2}[ 3\theta+\dfrac{\sin (2 \theta) }{4}+(2) \sin \theta]_{0}^{2\pi} $ Thus, $A=(\dfrac{a^2}{2}) [\dfrac{6\pi}{2}]=(\dfrac{3\pi}{2}) a^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.