Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 11: Parametric Equations and Polar Coordinates - Section 11.3 - Polar Coordinates - Exercises 11.3 - Page 662: 8

Answer

$a.\quad (2\sqrt{2},-3\pi/4)$ $b.\quad (3,\pi/2)$ $c.\quad (2,5\pi/6)$ $d.\displaystyle \quad (13,-\arctan(\frac{12}{5}))$

Work Step by Step

$(x,y)=(r\cos\theta,r\sin\theta)$ $r^{2}=x^{2}+y^{2},\displaystyle \qquad\tan\theta=\frac{y}{x}$ $a.\quad $ $\left[\begin{array}{lll} r^{2}=4+4 & & \tan\theta=\frac{-2}{-2}\\ r=2\sqrt{2} & & \theta=\pi/4+k\pi \end{array}\right], \quad $ $(-2,-2)$ is in quadrant III, we take $\theta=-3\pi/4$ Polar coordinates:$\quad (2\sqrt{2},-3\pi/4)$ $b.\quad $ $\left[\begin{array}{lll} r^{2}=0+9 & & \tan\theta=undef.\\ r=3 & & \theta=\pi/2+k\pi \end{array}\right], \quad $ $(0,3)$ is on the +y axis, we take $\theta=\pi/2$ Polar coordinates:$\quad (3,\pi/2)$ $c.\quad $ $\left[\begin{array}{lll} r^{2}=3+1 & & \tan\theta=\frac{1}{-\sqrt{3}}\\ r=2 & & \theta=\pi/6+k\pi \end{array}\right], $ $(-\sqrt{3},1)$ is in quadrant II, we take $\theta=5\pi/6$ Polar coordinates:$\quad (2,5\pi/6)$ $d.\quad $ $\left[\begin{array}{lll} r^{2}=25+144 & & \tan\theta=\frac{-12}{5}\\ r=13 & & \theta=\arctan(\frac{-12}{5})+k\pi \end{array}\right]$ The point is in quadrant IV, we keep $\displaystyle \theta=-\arctan(\frac{12}{5})$ Polar coordinates:$\displaystyle \quad (13,-\arctan(\frac{12}{5}))$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.