Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 11: Parametric Equations and Polar Coordinates - Section 11.3 - Polar Coordinates - Exercises 11.3 - Page 662: 10

Answer

$a.\quad (-2,0)$ $b.\quad (-1,\pi)$ $c.\quad (-3,\pi/2)$ $d.\quad (-1, 7\pi/6)$

Work Step by Step

$(x,y)=(r\cos\theta,r\sin\theta)$ $r^{2}=x^{2}+y^{2},\displaystyle \qquad\tan\theta=\frac{y}{x}$ $ a.\quad$ $\left[\begin{array}{lll} r^{2}=4+0 & & \tan\theta=\frac{0}{-2}\\ r=-2 & & \theta=0+k\pi \end{array}\right], \quad$ $(-2,0)$ is on the -x axis, and, since we chose a negative $r$, we take the angle for the opposite axis, the +x axis. We take $\theta=0$. Polar coordinates:$\quad (-2,0)$ $ b.\quad$ $\left[\begin{array}{lll} r^{2}=1+0 & & \tan\theta=\frac{0}{1}\\ r=-1 & & \theta=0+k\pi \end{array}\right], \quad$ $(1,0)$ is on the +x axis, and, since we chose a negative $r$, we take the angle for the opposite axis, the -x axis. We take $\theta=\pi$. Polar coordinates:$\quad (-1,\pi)$ $ c.\quad$ $\left[\begin{array}{lll} r^{2}=0+9 & & \tan\theta=undef.\\ r=-3 & & \theta=\pi/2+k\pi \end{array}\right], $ $(0,-3)$ is on the -y axis, and, since we chose a negative $r$, we take the angle for the opposite axis, the +y axis. We take $\theta=\pi/2$. Polar coordinates:$\quad (-3,\pi/2)$ $ d.\quad$ $\left[\begin{array}{lll} r^{2}=\frac{3}{4}+\frac{1}{4} & & \tan\theta=\frac{1}{\sqrt{3}}\\ r=-1 & & \theta=\pi/6+k\pi \end{array}\right]$ $(\sqrt{3}/2, 1/2)$ is in quadrant I, and, since we chose a negative $r$, we take the angle in the opposite quadrant, quadrant III. We take $\theta=7\pi/6$ Polar coordinates:$\quad (-1, 7\pi/6)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.