Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 11: Parametric Equations and Polar Coordinates - Section 11.3 - Polar Coordinates - Exercises 11.3 - Page 662: 3

Answer

$(a)$ $(2,\ \pi/2+2k\pi), k\in \mathbb{Z}$ or $(-2,\ \pi/2+(2k+1)\pi), k\in \mathbb{Z}$ $(b)$ $(2,\ 0+2k\pi), k\in \mathbb{Z}$ or $(-2,\ 0+(2k+1)\pi), k\in \mathbb{Z}$ $(c)$ $(-2,\ \pi/2+2k\pi), k\in \mathbb{Z}$ or $(+2,\ \pi/2+(2k+1)\pi), k\in \mathbb{Z}$ $(d)$ $(-2,\ 0+2k\pi), k\in \mathbb{Z}$ or $(+2,\ 0+(2k+1)\pi), k\in \mathbb{Z}$

Work Step by Step

$r$ represents the directed distance from the pole (the origin), and $\theta$ represents the angle with the initial ray ( the +x-axis). Directed distance means: - if $r$ is positive, then the point lies on the terminal side of $\theta+2k\pi, k\in \mathbb{Z}$ - if $r$ is negative, then the point lies opposite the terminal side of $\theta$; it lies on the terminal side of $\theta\pm\pi+2k\pi=\theta+ (2k+1)\pi, k\in \mathbb{Z}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.