Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.2 - Infinite Series - Exercises 10.2 - Page 580: 39

Answer

$-\frac{\pi}{6}$

Work Step by Step

Given : \[ \sum_{n=1}^{\infty} \left( \cos^{-1}\left(\frac{1}{n+1}\right) - \cos^{-1}\left(\frac{1}{n+2}\right) \right) \] Consider the series: \[ S_n = \left( \cos^{-1}\left(\frac{1}{2}\right) - \cos^{-1}\left(\frac{1}{3}\right) \right) + \left( \cos^{-1}\left(\frac{1}{3}\right) - \cos^{-1}\left(\frac{1}{4}\right) \right) + \ldots + \left( \cos^{-1}\left(\frac{1}{n+1}\right) - \cos^{-1}\left(\frac{1}{n+2}\right) \right) \] Combine the like terms, noticing cancellations: \[ S_n = \cos^{-1}\left(\frac{1}{2}\right) - \cos^{-1}\left(\frac{1}{n+2}\right) \] Now, find the limit as \( n \) approaches infinity: \[ \lim_{n\to\infty} S_n = \cos^{-1}\left(\frac{1}{2}\right) - \lim_{n\to\infty} \cos^{-1}\left(\frac{1}{n+2}\right) \] As \( n \) approaches infinity, \( \frac{1}{n+2} \) approaches zero, and \( \cos^{-1}(0) = \frac{\pi}{2} \): \[ \lim_{n\to\infty} S_n = \cos^{-1}\left(\frac{1}{2}\right) - \frac{\pi}{2} \] Evaluate \(\cos^{-1}\left(\frac{1}{2}\right)\): \[ \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \] Substitute back: \[ \lim_{n\to\infty} S_n = \frac{\pi}{3} - \frac{\pi}{2} = -\frac{\pi}{6} \] Therefore, the series converges to \(-\frac{\pi}{6}\).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.