#### Answer

divergent.

#### Work Step by Step

A $p$-series has the form of $\Sigma_{n=k}^{\infty}\dfrac{1}{n^p}$.It is convergent iff $p \gt 1$ otherwise diverges.
From the given problem, we have $\Sigma_{n=1}^{\infty}\dfrac{-5}{n}$
The given series can be re-written as: $a_n=-5\Sigma_{n=1}^{\infty}\dfrac{1}{ n^{1}}$
Here, $p=1$
Thus, the given series divergent.