Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Appendices - Section A.3 - Lines, Circles, and Parabolas - Exercises A.3 - Page AP-18: 49

Answer

The sides $\overline{AB}$ and $\overline{BC}$ are perpendicular and have the same length. The fourth vertex is $D=(-2,-2)$

Work Step by Step

Apply the distance formula $d=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$ $|AB|=\sqrt{(x_{B}-x_{A})^{2}+(y_{B}-y_{A})^{2}}=\sqrt{(1-2)^{2}+(3-(-1))^{2}}=\sqrt{1+16} =\sqrt{17}$ $|BC|=\sqrt{(x_{C}-x_{B})^{2}+(y_{C}-y_{B})^{2}}=\sqrt{(-3-1)^{2}+(2-3)^{2}}=\sqrt{16+1} =\sqrt{17}$ So, $\overline{AB}$ and $\overline{BC}$ have the same length. Testing slopes $m_{AB}=\displaystyle \frac{y_{B}-y_{A}}{x_{B}-x_{A}}=\frac{3-(-1)}{1-2}=\frac{-4}{1}=-4$ $m_{BC}==\displaystyle \frac{y_{C}-y_{B}}{x_{C}-x_{B}}=\frac{2-3}{-3-1}=\frac{-1}{-4}=-\frac{1}{4}$ Since $m_{AB}=-\displaystyle \frac{1}{m_{BC}}$, $\overline{AB}$ and $\overline{BC}$ lie on perpencular lines. Thus, A, B, and C are three vertices of a square. The fourth vertex lies opposite to B. In a square, the diagonals bisect each other (and are perpendicular, but we don't need that now). The midpoint of $\overline{AC}$ is also the midpoint of $\overline{BD}$ $(\displaystyle \frac{x_{A}+x_{C}}{2},\frac{y_{A}+y_{C}}{2})=(\frac{x_{B}+x_{D}}{2},\frac{y_{B}+y_{D}}{2})$ $(\displaystyle \frac{2-3}{2},\frac{-1+2}{2})=(\frac{1+x_{D}}{2},\frac{3+y_{D}}{2})$ $\left\{\begin{array}{lll} 1+x_{D}=-1 & \Rightarrow & x_{D}=-2\\ 3+y_{D}=1 & \Rightarrow & y_{D}=-2 \end{array}\right.$ $D=(-2,-2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.