Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.2 Exercises - Page 1012: 38

Answer

$4\pi^2$

Work Step by Step

$\iint_R(1+x^2\sin y+y^2\sin x)dA=\iint_R 1dA+\iint_R x^2\sin ydA +\iint_Ry^2\sin x dA$ Firstly, find each double integral: (i) $\iint_R 1dA=\iint_RdA=$ Area of $R$ $=(\pi-(-\pi))\cdot (\pi-(-\pi))=2\pi\cdot 2\pi =4\pi^2$ (ii) We know that $\sin y$ is an odd function, so that $\iint_Rx^2\sin ydA=\int_{-\pi}^\pi x^2(\int_{-\pi}^\pi\sin y dy)dx=\int_{-\pi}^\pi x^2\cdot 0dx=\int_{-\pi}^\pi 0dx=0$ (iii) $\iint_Ry^2\sin xdA=\iint_{-\pi}^\pi y^2\int_{-\pi}^\pi\sin xdx)dy=\int_{-\pi}^\pi y^2\cdot 0dy=0$ Thus, $\iint_R(1+x^2\sin y+y^2\sin x)dA=4\pi^2+0+0=4\pi^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.