Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.2 Exercises - Page 1012: 36

Answer

The average value of $f$ over $R$ is $\frac{(4+e)^{5/2}-e^{5/2}-32}{15}$.

Work Step by Step

The area of $R$ is $A=length\cdot width=4\cdot 1=4$. Find the double integral $\iint_R f(x,y)dA$: $\int_{0}^4\int_0^1e^y\sqrt{x+e^y}dydx=\int_0^4\frac{2(x+e^y)^{3/2}}{3}]_0^1dx=\int_0^4\frac{2(x+e)^{3/2}}{3}-\frac{2x^{3/2}}{3}dx=\frac{4(x+e)^{5/2}}{15}-\frac{4x^{5/2}}{15}]_0^4=\frac{4(4+e)^{5/2}}{15}-\frac{4e^{5/2}}{15}-\frac{128}{15}=\frac{4((4+e)^{5/2}-e^{5/2}-32)}{15}$ Find the average value of $f$ over $R$: $\bar{f}=\frac{1}{A}\iint_R f(x,y)dA=\frac{1}{4}\cdot \frac{4((4+e)^{5/2}-e^{5/2}-32)}{15}=\frac{(4+e)^{5/2}-e^{5/2}-32}{15}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.