Answer
$0$
Work Step by Step
$\iint_R\frac{xy}{1+x^4}dA=\int_{-1}^1\int_0^1\frac{xy}{1+x^4}dydx$
$=\int_{-1}^1[\frac{xy^2}{2(1+x^4)}]_0^1dx$
$=\int_{-1}^1\frac{x}{2(1+x^4)}dx$
Note that $g(x)=\frac{x}{2(1+x^4)}$ is an odd function since $g(-x)=\frac{-x}{2(1+(-x)^4)}=\frac{-x}{2(1+x^4)}=-g(x)$
So, $\iint_R \frac{xy}{1+x^4}dA=\int_{-1}^1\frac{x}{2(1+x^4)}dx=0$