Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.2 Exercises - Page 1012: 37

Answer

$0$

Work Step by Step

$\iint_R\frac{xy}{1+x^4}dA=\int_{-1}^1\int_0^1\frac{xy}{1+x^4}dydx$ $=\int_{-1}^1[\frac{xy^2}{2(1+x^4)}]_0^1dx$ $=\int_{-1}^1\frac{x}{2(1+x^4)}dx$ Note that $g(x)=\frac{x}{2(1+x^4)}$ is an odd function since $g(-x)=\frac{-x}{2(1+(-x)^4)}=\frac{-x}{2(1+x^4)}=-g(x)$ So, $\iint_R \frac{xy}{1+x^4}dA=\int_{-1}^1\frac{x}{2(1+x^4)}dx=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.