Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.2 Exercises - Page 1012: 31

Answer

$\frac{64}{3}$

Work Step by Step

The paraboloid $z=2+x^2+(y-2)^2$ is above the plane $z=1$. Then, the volume of the solid enclosed by the paraboloid and the planes $z=1$, $x=1$, $x=-1$, $y=0$, and $y=4$ is represented by the integral $V=\int_{-1}^1\int_0^42+x^2+(y-2)^2-1dydx$. Find the volume by evaluating this integral: $V=\int_{-1}^1\int_0^41+x^2+(y-2)^2dydx=\int_{-1}^1y+x^2y+\frac{(y-2)^3}{3}]_0^4dx$ $=\int_{-1}^1(4+4x^2+\frac{16}{3})dx=\int_{-1}^14x^2+\frac{28}{3}dx=\frac{4x^3+28x}{3}]_{-1}^1=\frac{32}{3}-(-\frac{32}{3})=\frac{64}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.