Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 9 - Section 9.3 - Logarithmic Functions and Models - Exercises - Page 658: 56

Answer

$\approx 81,100$ years

Work Step by Step

A decay model has the form $Q(t)=Q_{0}e^{-kt}$. The decay constant k and half-life $t_{h}$ are related by $t_{h}k=\ln 2$ Substitute $t_{h}=24,400$ and solve for k. $24,400k=\ln 2$ $k=\displaystyle \frac{\ln 2}{24,400}\approx 0.00002841$ So, $Q(t)\approx Q_{0}e^{(-0.00002841)t}$ Now, $Q_{0}=10$ g, $Q(t)=1$ g. Substituting, we solve for t. $1=10e^{(-0.00002841)t} \qquad/\div 10$ $e^{(-0.00002841)t}=0.1\qquad/\ln(..)$ $-0.00002841t=\ln(0.1)$ $ t=\displaystyle \frac{\ln 0.1}{-0.00002841}\qquad$ ... round to 3 sig.dig. $\approx 81,100$ years
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.