Answer
$37$ years
Work Step by Step
Given $Q(t)\approx Q_{0}e^{-0.0248t}$, (from part a.)
we want to find t for which $Q(t)=\displaystyle \frac{2}{5}Q_{0}$
$\displaystyle \frac{2}{5}Q_{0}=Q_{0}e^{-0.0248t}$
$\displaystyle \frac{2}{5}=e^{-0.139t}\qquad/\ln(...)$
$\displaystyle \ln(\frac{2}{5})=-0.0248t$
$t=\displaystyle \frac{\ln(\frac{2}{5})}{-0.0248}\approx 37$ years