#### Answer

$( 1,1)$

#### Work Step by Step

Remove the fractions by multiplying
the first equation with 6,
the second with 4
(common denominators).
$\left\{\begin{array}{llll}
-4x & +3y & =-1 & \\
x & -4y & =-3 & /\times 4
\end{array}\right.$
... we aim to eliminate x...
$\left\{\begin{array}{llll}
-4x & +3y & =-1 & \\
4x & -16y & =-12 &
\end{array}\right.$
... add and solve ...
$-13y=-13\qquad/\div(-13)$
$y=1$
Back substitute into one of the above equations:
$x-4y=-3$
$x-4(1)=-3\qquad/+4$
$x=1$
Solutions are ordered pairs (x,y):
$( 1,1)$
Check graphically by graphing both lines in the same window and determining the intersection (see image).