Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.1 - The Indefinite Integral - Exercises - Page 961: 99

Answer

See example below.

Work Step by Step

Let $f(x)=4,\quad g(x)=e^{x}$ $\displaystyle \int f(x)dx=4x+C$ $\displaystyle \int g(x)dx=e^{x}+D$ $\displaystyle \left(\int f(x)dx\right)\left(\int g(x)dx\right)=(4x+C)(e^{x}+D)$ $=4xe^{x}+4Dx+Ce^{x}+CD\qquad (*)$ On the other hand $\displaystyle \int[f(x)\cdot g(x)]dx=\int 4e^{x}dx=4e^{x}+E\qquad (**)$ Whatever values we assign to C,D and E, the expression (**) does not contain $4xe^{x}$, so it can not be equal to (*). This means that in general $\displaystyle \int[f(x)\cdot g(x)]dx\neq\left(\int f(x)dx\right)\left(\int g(x)dx\right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.