Answer
Incorrect term: $-11\displaystyle \int xdx=-11\cdot\frac{x^{2}}{2}+C\qquad $
(not $-11+C$ )
Correct answer:$\displaystyle \qquad x^{3}-\frac{11x^{2}}{2}+C$
Work Step by Step
$\displaystyle \int(3x^{2}-11x)dx=3\int x^{2}dx-11\int xdx$
Term by term:
$3\displaystyle \int x^{2}dx=3\cdot\frac{x^{3}}{3}+C=x^{3}+C\qquad $
(correct)
$-11\displaystyle \int xdx=-11\cdot\frac{x^{2}}{2}+C\qquad $
(not $-11+C$, incorrect )
Correct answer:$\displaystyle \qquad x^{3}-\frac{11x^{2}}{2}+C$