Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 853: 50

Answer

$$\frac{{dy}}{{dx}} = \sqrt {\frac{{x - 1}}{{{x^2} + 2}}} \left( {\frac{1}{{2\left( {x - 1} \right)}} - \frac{x}{{{x^2} + 1}}} \right)$$

Work Step by Step

$$\eqalign{ & y = \sqrt {\frac{{x - 1}}{{{x^2} + 2}}} \cr & {\text{Rewrite the function using the radical properties}} \cr & y = \frac{{\sqrt {x - 1} }}{{\sqrt {{x^2} + 2} }} \cr & y = \frac{{{{\left( {x - 1} \right)}^{1/2}}}}{{{{\left( {{x^2} + 2} \right)}^{1/2}}}} \cr & {\text{Differentiate by logarithmic differentiation}} \cr & {\text{Take the natural logarithm of both sides}} \cr & \ln y = \ln \frac{{{{\left( {x - 1} \right)}^{1/2}}}}{{{{\left( {{x^2} + 2} \right)}^{1/2}}}} \cr & {\text{Use the property }}\ln \left( {\frac{a}{b}} \right) = \ln a - \ln b \cr & \ln y = \ln {\left( {x - 1} \right)^{1/2}} + \ln {\left( {{x^2} + 2} \right)^{1/2}} \cr & {\text{Use the property }}\ln \left( {{a^n}} \right) = n\ln a \cr & \ln y = \frac{1}{2}\ln \left( {x - 1} \right) - \frac{1}{2}\ln \left( {{x^2} + 2} \right) \cr & {\text{Differentiate both sides w}}{\text{.r}}{\text{.t}} \hspace{2mm} x \cr & \frac{d}{{dx}}\left[ {\ln y} \right] = \frac{1}{2}\frac{d}{{dx}}\left[ {\ln \left( {x - 1} \right)} \right] - \frac{1}{2}\frac{d}{{dx}}\left[ {\ln \left( {{x^2} + 2} \right)} \right] \cr & \frac{d}{{dx}}\left[ {\ln y} \right] = \frac{1}{2}\left( {\frac{1}{{x - 1}}} \right) - \frac{1}{2}\left( {\frac{{2x}}{{{x^2} + 1}}} \right) \cr & \frac{1}{y}\frac{{dy}}{{dx}} = \frac{1}{{2\left( {x - 1} \right)}} - \frac{x}{{{x^2} + 1}} \cr & \frac{{dy}}{{dx}} = y\left( {\frac{1}{{2\left( {x - 1} \right)}} - \frac{x}{{{x^2} + 1}}} \right) \cr & {\text{Substitute back }}y = \sqrt {\frac{{x - 1}}{{{x^2} + 2}}} \cr & \frac{{dy}}{{dx}} = \sqrt {\frac{{x - 1}}{{{x^2} + 2}}} \left( {\frac{1}{{2\left( {x - 1} \right)}} - \frac{x}{{{x^2} + 1}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.