Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 853: 32

Answer

$$\eqalign{ & {\bf{a}}){\text{ }}m = - 6 \cr & {\bf{b}})y = - 6x - 11 \cr} $$

Work Step by Step

$$\eqalign{ & 3{x^2} - {y^2} = 11 \cr & {\text{Differentiating each side w}}{\text{.r}}{\text{.t}} \hspace{2mm}x\cr & 3\frac{d}{{dx}}\left[ {{x^2}} \right] - \frac{d}{{dx}}\left[ {{y^2}} \right] = \frac{d}{{dx}}\left[ {11} \right] \cr & 3\left( {2x} \right) - 2y\frac{{dy}}{{dx}} = 0 \cr & 6x - 2y\frac{{dy}}{{dx}} = 0 \cr & - 2y\frac{{dy}}{{dx}} = - 6x \cr & \frac{{dy}}{{dx}} = \frac{{ - 6x}}{{ - 2y}} \cr & \frac{{dy}}{{dx}} = \frac{{3x}}{y} \cr & \cr & \left( {\bf{a}} \right){\text{ Calculating the slope at the given point}}\left( { - 2,1} \right) \cr & m = {\left. {\frac{{dy}}{{dx}}} \right|_{\left( { - 2,1} \right)}} = \frac{{3\left( { - 2} \right)}}{1} \cr & m = - 6 \cr & \cr & \left( {\bf{b}} \right) \cr & {\text{Find the equation of the tangent line at }}\left( { - 2,1} \right){\text{ is}} \cr & y - {y_1} = m\left( {x - {x_1}} \right) \cr & y - 1 = - 6\left( {x + 2} \right) \cr & y - 1 = - 6x - 12 \cr & y = - 6x - 11 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.