Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 853: 39

Answer

$${\text{ }}{\bf{a}}){\text{ }}m = 0,{\text{ }}{\bf{b}})y = 1$$

Work Step by Step

$$\eqalign{ & \ln \left( {x + y} \right) - x = 3{x^2} \cr & {\text{We have that }}x = 0,{\text{ substituting}} \cr & \ln \left( {0 + y} \right) - 0 = 3{\left( 0 \right)^2} \cr & \ln y = 0 \cr & y = 1 \cr & {\text{For }}x = 0{\text{ we obtain the }} \cr & {\text{Point }}\left( {0,1} \right) \cr & \ln \left( {x + y} \right) - x = 3{x^2} \cr & {\text{Differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left[ {\ln \left( {x + y} \right)} \right] - \frac{d}{{dx}}\left[ x \right] = \frac{d}{{dx}}\left[ {3{x^2}} \right] \cr & {\text{Therefore,}} \cr & \frac{1}{{x + y}}\frac{d}{{dx}}\left[ {x + y} \right] - \frac{d}{{dx}}\left[ x \right] = \frac{d}{{dx}}\left[ {3{x^2}} \right] \cr & \frac{1}{{x + y}}\left( {1 + \frac{{dy}}{{dx}}} \right) - 1 = 6x \cr & \frac{1}{{x + y}} + \frac{1}{{x + y}}\frac{{dy}}{{dx}} - 1 = 6x \cr & \frac{1}{{x + y}}\frac{{dy}}{{dx}} = 6x + 1 - \frac{1}{{x + y}} \cr & \frac{{dy}}{{dx}} = \left( {6x + 1} \right)\left( {x + y} \right) - 1 \cr & \left( {\bf{a}} \right){\text{ Calculating the slope at the point}}\left( {0,1} \right) \cr & m = {\left. {\frac{{dy}}{{dx}}} \right|_{\left( {10, - 1} \right)}} = \left( {0 + 1} \right)\left( {0 + 1} \right) - 1 \cr & m = 0 \cr & \cr & \left( {\bf{b}} \right){\text{The equation of the tangent line at }}\left( {0, 1} \right){\text{ is}} \cr & y - {y_1} = m\left( {x - {x_1}} \right) \cr & y - 1 = 0\left( {x - 0} \right) \cr & {\text{Simplify}} \cr & y = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.