Answer
$ e^{x}(x^{2}+2x-1)$
Work Step by Step
$f(x)$ is a product, $f=u\cdot v$
$u(x)=e^{x},\quad u^{\prime}(x)=e^{x}$
$v(x)=x^{2}-1,\quad v^{\prime}(x)=2x$
$f^{\prime}(x)=\displaystyle \frac{d}{dx}[u(x)\cdot v(x)]=u^{\prime}(x)\cdot v(x)+u(x)\cdot v^{\prime}(x)$
$=e^{x}(x^{2}-1)+e^{x}(2x)$
$=e^{x}(x^{2}+2x-1)$