Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Review - Review Exercises - Page 855: 10

Answer

$-\displaystyle \frac{4x}{(x^{2}-1)^{2}}$

Work Step by Step

$f(x)$ is a quotient, $f=\displaystyle \frac{u}{v}$ $u(x)=x^{2}+1,\quad u^{\prime}(x)=2x$ $v(x)=x^{2}-1,\quad v^{\prime}(x)=2x$ $f^{\prime}(x)=\displaystyle \frac{d}{dx}[\frac{u(x)}{v(x)}]=\frac{u^{\prime}(x)\cdot v(x)-u(x)\cdot v^{\prime}(x)}{[v(x)]^{2}}$ $=\displaystyle \frac{2x\cdot(x^{2}-1)-(x^{2}+1)\cdot 2x}{[x^{2}-1]^{2}}$ $=\displaystyle \frac{2x\cdot(x^{2}-1-x^{2}-1)}{[x^{2}-1]^{2}}$ $=\displaystyle \frac{2x\cdot(-2)}{[x^{2}-1]^{2}}$ $=-\displaystyle \frac{4x}{(x^{2}-1)^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.