Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 9 - Multiveriable Calculus - 9.6 Double Integrals - 9.6 Exercises - Page 514: 38

Answer

$$e - 2$$

Work Step by Step

$$\eqalign{ & \iint\limits_R {2{x^3}{e^{{x^2}y}}}dxdy;\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \leqslant x \leqslant 1,\,\,\,\,\,\,\,0 \leqslant y \leqslant 1 \cr & or \cr & \iint\limits_R {2{x^3}{e^{{x^2}y}}}dydx \cr & \cr & {\text{replacing the limits for the region }}R \cr & = \int_0^1 {\int_0^1 {2{x^3}{e^{{x^2}y}}dy} dx} \cr & = \int_0^1 {\left[ {\int_0^1 {2{x^3}{e^{{x^2}y}}dy} } \right]dx} \cr & {\text{solve the inner integral by treating }}x{\text{ as a constant}} \cr & = 2x\int_0^1 {{x^2}{e^{{x^2}y}}dy} \cr & {\text{integrate by using the rule }}\int {{e^u}} du = {e^u} + C \cr & = 2x\left[ {{e^{{x^2}y}}} \right]_0^1 \cr & {\text{evaluating the limits in the variable }}y \cr & = 2x\left[ {{e^{{x^2}\left( 1 \right)}} - {e^{{x^2}\left( 0 \right)}}} \right] \cr & {\text{simplifying}} \cr & = 2x\left( {{e^{{x^2}}} - 1} \right) \cr & = 2x{e^{{x^2}}} - 2x \cr & \cr & \int_0^1 {\left[ {\int_0^1 {2{x^3}{e^{{x^2}y}}dy} } \right]dx} = \int_0^1 {\left( {2x{e^{{x^2}}} - 2x} \right)dx} \cr & {\text{integrating}} \cr & = \left[ {{e^{{x^2}}} - {x^2}} \right]_0^1 \cr & {\text{evaluate}} \cr & = \left( {{e^{{1^2}}} - {1^2}} \right) - \left( {{e^{{0^2}}} - {0^2}} \right) \cr & {\text{simplifying}} \cr & = e - 1 - 1 \cr & = e - 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.