Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 8 - Further Techniques and Applications of Integration - Chapter Review - Review Exercises - Page 455: 10

Answer

False

Work Step by Step

\[\begin{align} & \int_{-\infty }^{\infty }{x{{e}^{-2x}}}dx=\underset{c\to \infty }{\mathop{\lim }}\,\int_{-c}^{c}{x{{e}^{-2x}}}dx \\ & \text{The statement is false, we must split the limits with a constant} \\ & \text{between }\left( -\infty ,\infty \right) \\ & \int_{-\infty }^{\infty }{x{{e}^{-2x}}}dx=\underset{c\to \infty }{\mathop{\lim }}\,\int_{-\infty}^{c}{x{{e}^{-2x}}}dx+\underset{c\to \infty }{\mathop{\lim }}\,\int_{c}^{\infty}{x{{e}^{-2x}}}dx \\ & \text{False} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.