Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 7 - Integration - 7.1 Antiderivatives - 7.1 Exercises - Page 367: 62

Answer

(a) $c^{'}(t)= (-\frac{kA}{V}) (c_0-C) e^{-\frac{kAt}{V}} $ (b) See explanation

Work Step by Step

$c^{'}(t)=\frac{kA}{V}[C-c(t)]$ ........................ (1) $c(t)=(c_0-C)e^{-\frac{kAt}{V}}+C$ .............................. (2) (a) Taking derivative of equation (2) $c^{'}(t)=\frac{d( (c_0-C)e^{-\frac{kAt}{V}}+C )}{dt}$ $c^{'}(t)=\frac{d( (c_0-C)e^{-\frac{kAt}{V}}}{dt}+\frac{dC}{dt}$ $c^{'}(t)=(c_0-C)\frac{de^{-\frac{kAt}{V}}}{dt}+0$ $c^{'}(t)=(c_0-C) e^{-\frac{kAt}{V}} \frac{d ( -\frac{kAt}{V} )}{dt}$ $c^{'}(t)=(c_0-C) e^{-\frac{kAt}{V}} (-\frac{kA}{V}) \frac{d ( t )}{dt}$ $c^{'}(t)= (-\frac{kA}{V}) (c_0-C) e^{-\frac{kAt}{V}} $ (b) Putting $c^{'}(t)= (-\frac{kA}{V}) (c_0-C) e^{-\frac{kAt}{V}} $ in equation (1) $ (-\frac{kA}{V}) (c_0-C) e^{-\frac{kAt}{V}} =\frac{kA}{V}[C-c(t)]$ Putting $t=0, c(0)=c_0$ $ (-\frac{kA}{V}) (c_0-C) e^{-\frac{kA(0)}{V}} =\frac{kA}{V}[C-c(0)]$ $ (-\frac{kA}{V}) (c_0-C) =\frac{kA}{V}[C-c_0)$ $ - (c_0-C) =C-c_0)$ $ C-c_0 =C-c_0$ LHS=RHS Hence equation (2) is correct antiderivative of equation (1)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.