Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 3 - The Derivative - 3.1 Limits - 3.1 Exercises - Page 137: 27



Work Step by Step

see: Rules for Limits Let $a, A$, and $B$ be real numbers, and let $f$ and $g$ be functions such that $\displaystyle \lim_{x\rightarrow a}f(x)=A$ and $\displaystyle \lim_{x\rightarrow a}g(x)=B$. 8. For any real number $b>0,$ $\displaystyle \lim_{x\rightarrow a}b^{f(x)}=b^{[\lim_{x\rightarrow a}f(x)]}=b^{A}$. --------------- $\displaystyle \lim_{x\rightarrow 4}2^{f(x)}=2^{\lim_{x\rightarrow 4}f(x)}$ $=2^{9}$ $=512$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.