Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 3 - The Derivative - 3.1 Limits - 3.1 Exercises - Page 137: 22



Work Step by Step

see: Rules for Limits Let $a, A$, and $B$ be real numbers, and let $f$ and $g$ be functions such that $\displaystyle \lim_{x\rightarrow a}f(x)=A$ and $\displaystyle \lim_{x\rightarrow a}g(x)=B$. 3. $\displaystyle \lim_{x\rightarrow a}[f(x)\cdot g(x)]=[\lim_{x\rightarrow a}f(x)]\cdot[\lim_{x\rightarrow a}g(x)]=A\cdot B$ (The limit of a product is the product of the limits.) --------------- $\displaystyle \lim_{x\rightarrow 4}[(g(x)\cdot f(x)]=[\lim_{x\rightarrow 4}g(x)]\cdot[\lim_{x\rightarrow 4}f(x)]$ $=27\cdot 9=243$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.