Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 13 - The Trigonometric Functions - Chapter Review - Review Exercises - Page 702: 66

Answer

$$ = - \frac{1}{2}\cos \left( {2x} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\sin 2x} dx \cr & {\text{set }}u = 2x{\text{ then }}\frac{{du}}{{dx}} = 2,\,\,\,\,\,\,\,\,\frac{{du}}{2} = dx \cr & {\text{write the integrand in terms of }}u \cr & \int {\sin 2x} dx = \int {\sin u} \left( {\frac{{du}}{2}} \right) \cr & {\text{use multiple constant rule}} \cr & = \frac{1}{2}\int {\sin u} du \cr & {\text{integrate by using the Basic Trigonometric integral }}\int {\sin x} dx = - \cos x + C \cr & = \frac{1}{2}\left( { - \cos u} \right) + C \cr & = - \frac{1}{2}\cos u + C \cr & {\text{write in terms of }}x \cr & = - \frac{1}{2}\cos \left( {2x} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.