Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 12 - Sequences and Series - 12.7 L'Hospital's Rule - 12.7 Exercises - Page 659: 9

Answer

$$1$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{x{e^x}}}{{{e^x} - 1}} \cr & {\text{Verify if the conditions of l'Hospital's rule are satisfied}}{\text{. Here}} \cr & {\text{evaluate the limit substituting }}0{\text{ for }}x{\text{ into the numerator and }} \cr & {\text{denominator}}{\text{.}} \cr & \mathop {\lim }\limits_{x \to 0} x{e^x} = \left( 0 \right){e^0} = 0 \cr & \mathop {\lim }\limits_{x \to 0} \left( {{e^x} - 1} \right) = {e^0} - 1 = 1 - 1 = 0 \cr & \cr & {\text{Since the limits of both numerator and denominator are 0}}{\text{, }} \cr & {\text{l'Hospital's rule applies}}{\text{. Differentiating the numerator and}} \cr & {\text{denominator}}{\text{.}} \cr & {\text{for }}{e^{2x}} - 1 \to {D_x}\left( {x{e^x}} \right) = x{D_x}\left( {{e^x}} \right) + {e^x}{D_x}\left( x \right) = x{e^x} + {e^x} \cr & {\text{for }}x \to {D_x}\left( {{e^x} - 1} \right) = {e^x} \cr & {\text{then}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{x{e^x}}}{{{e^x} - 1}} = \mathop {\lim }\limits_{x \to 0} \frac{{x{e^x} + {e^x}}}{{{e^x}}} \cr & {\text{Find the limit of the quotient of the derivatives}} \cr & = \frac{{\left( 0 \right){e^0} + {e^0}}}{{{e^0}}} \cr & = \frac{1}{1} \cr & = 1 \cr & {\text{By l'Hospital' rule}}{\text{, this result is the desired limit:}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{x{e^x}}}{{{e^x} - 1}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.