Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 12 - Sequences and Series - 12.7 L'Hospital's Rule - 12.7 Exercises - Page 659: 7

Answer

$${\text{ The limit does not exist}}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{{{x^4}}} \cr & {\text{Verify if the conditions of l'Hospital's rule are satisfied}}{\text{. Here}} \cr & {\text{evaluate the limit substituting }}0{\text{ for }}x{\text{ into the numerator and }} \cr & {\text{denominator}}{\text{.}} \cr & \mathop {\lim }\limits_{x \to 0} \left( {{e^x} - 1} \right) = {e^0} - 1 = 0 \cr & \mathop {\lim }\limits_{x \to 0} {x^4} = {\left( 0 \right)^4} = 0 \cr & \cr & {\text{Since the limits of both numerator and denominator are 0}}{\text{, }} \cr & {\text{l'Hospital's rule applies}}{\text{. Differentiating the numerator and}} \cr & {\text{denominator}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{{D_x}\left( {{e^x} - 1} \right)}}{{{D_x}\left( {{x^4}} \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{{e^x}}}{{4{x^3}}} \cr & {\text{Find the limit of the quotient of the derivatives}} \cr & = \frac{{{e^0}}}{{4{{\left( 0 \right)}^3}}} \cr & = \frac{1}{0} \cr & {\text{Since the limits does not leads to the indeterminate form }}\frac{0}{0}{\text{ or }}\frac{{ \pm \infty }}{{ \pm \infty }} \cr & {\text{we cannot apply the l'Hospital's rule}}. \cr & {\text{}} \cr & {\text{By l'Hospital' rule}}{\text{, the limit does not exist}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.