Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 9 - Section 9.3 - Separable Equations - 9.3 Exercises - Page 605: 18

Answer

$$ \frac{dL}{dt} =K L^{2} \ln t , \quad L(1)=-1. $$ The solution of the given differential equation is $$ L= \frac{1}{K t-K t \ln t -(1+K)} $$

Work Step by Step

$$ \frac{dL}{dt} =K L^{2} \ln t , \quad L(1)=-1. $$ We write the equation in terms of differentials: $$ \frac{dL}{L^{2}} =K \ln t dt $$ and integrate both sides: $$ \int \frac{dL}{L^{2}} =\int K \ln t dt $$ use integration by parts with $$ \quad\quad\quad \left[\begin{array}{c}{u=\ln t, \quad\quad dv= dt } \\ {d u= \frac{dt}{t} , \quad\quad v= t }\end{array}\right] , \text { then }\\ $$ $ \Rightarrow$ $$ -\frac{1}{L}= K t \ln t - K \int dt +C $$ $\Rightarrow$ $$ -\frac{1}{L}= K t \ln t - K t +C $$ $\Rightarrow$ $$ L= \frac{1}{K t-K t \ln t -C} $$ where $C $ is an arbitrary constant. Now, to satisfy the condition $ L(1)=-1, $ we have $$ -1= \frac{1}{K -K \ln (1) -C} \quad \Rightarrow C-K=1 \quad \Rightarrow C=1+K $$ Thus, the solution of the given differential equation is $$ L= \frac{1}{K t-K t \ln t -(1+K)} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.