Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 9 - Section 9.3 - Separable Equations - 9.3 Exercises - Page 605: 11

Answer

Given $$\frac{dy}{dx}= xe^y,\ \ \ \ y(0)= 0$$ Since \begin{align*} e^{-y}dy&=xdx\\ \int e^{-y}dy&=\int xdx\\ -e^{-y}&=\frac{1}{2}x^2+c \end{align*} At $x=0, \ y=0 $, then $c= -1$ and $$-e^{-y} =\frac{1}{2}x^2 -1$$ Hence $$y= -\ln \left(1-\frac{1}{2}x^2\right)$$

Work Step by Step

Given $$\frac{dy}{dx}= xe^y,\ \ \ \ y(0)= 0$$ Since \begin{align*} e^{-y}dy&=xdx\\ \int e^{-y}dy&=\int xdx\\ -e^{-y}&=\frac{1}{2}x^2+c \end{align*} At $x=0, \ y=0 $, then $c= -1$ and $$-e^{-y} =\frac{1}{2}x^2 -1$$ Hence $$y= \ln \left(1-\frac{1}{2}x^2\right)^{-1}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.